7,481 research outputs found

    Who is my neighbour? Understanding indifference as a vice

    Get PDF
    Indifference is often described as a vice. Yet who is indifferent; to what; and in what way is poorly understood, and frequently subject to controversy and confusion. This paper proposes a framework for the interpretation and analysis of ethically problematic forms of indifference in terms of how different states of indifference can be either more or less dynamic, or more or less sensitive to the nature and state of their object

    Coastal Science for Resilience and Management at the Cape Hatteras National Seashore, NC, USA

    Get PDF
    National seashores are cherished public lands with rich environmental, cultural, and historic resources. The Cape Hatteras National Seashore is one such coastal asset that is both bountiful yet vulnerable, with historic lighthouses, critical habitats, and recreational amenities alike facing threats of sea-level rise and continual storm and climate change impacts. Over 3 million visitors to the Seashore in 2021 set an annual visitation record. Historic resources such as the Bodie Island Lighthouse and Ocracoke Lighthouse are among the most visited sites, yet these assets are also among those most vulnerable to flooding, compromised structural integrity, and reduced accessibility. Future challenges to the protection and management of such resources are already being felt in the form of storms, extreme rainfall, and recurrent compound flooding. Such threats are also coincident with increasing visitation and recreational demand. This paper examines the science-based data that are being collected and management efforts underway to inform future planning, intervention, or adaptation to sea-level rise and barrier island evolution. The paper identifies the opportunities for mitigation and adaptation as well as potential environmental tipping points and limits to resilience by assessing the frequency and magnitude of flooding events and shoreline change

    Low State, Phase-Resolved IR Spectroscopy of VV Puppis

    Full text link
    We present phase-resolved low resolution JHKJHK and higher resolution KK-band spectroscopy of the polar VV Pup. All observations were obtained when VV Pup was in a low accretion state having a K magnitude near 15. The low resolution observations reveal cyclotron emission in the JJ band during some phases, consistent with an origin near the active 30.5 MG pole on the white dwarf. The secondary in VV Pup appears to be a normal M7V star and we find that the HH and KK band fluxes are entirely due to this star at all orbital phases during the low accretion state. We use our higher resolution Keck spectroscopy to produce the first KK-band radial velocity curve for VV Pup. Our orbital solution yields K2K_2=414±27\pm27 km sec1^{-1} and leads to mass estimates of M1_1=0.73±\pm0.05 M_{\odot} and M2_2=0.10±\pm0.02 M_{\odot}. We find that the mass accretion rates during the normal low states of the polars VV Pup, EF Eri, and EQ Cet are near 1013^{-13} M_{\odot} yr1^{-1}. The fact that \.M is not zero in low state polars indicates active secondary stars in these binary systems, including the sub-stellar donor star present in EF Eri.Comment: Accepted in Astronomical Journal 5 figure

    Postexposure Treatment of Marburg Virus Infection

    Get PDF
    Rhesus monkeys are protected from disease when a recombinant vesicular stomatitis virus–based vaccine is administered 20–30 min after infection with Marburg virus. We protected 5/6 monkeys when this vaccine was given 24 h after challenge; 2/6 animals were protected when the vaccine was administered 48 h postinfection

    Optical vortex trap for resonant confinement of metal nanoparticles

    Get PDF
    The confinement and controlled movement of metal nanoparticles and nanorods is an emergent area within optical micromanipulation. In this letter we experimentally realise a novel trapping geometry near the plasmon resonance using an annular light field possessing a helical phasefront that confines the nanoparticle to the vortex core (dark) region. We interpret our data with a theoretical framework based upon the Maxwell stress tensor formulation to elucidate the total forces upon nanometric particles near the particle plasmon resonance. Rotation of the particle due to orbital angular momentum transfer is observed. This geometry may have several advantages for advanced manipulation of metal nanoparticles

    Multiwavelength all-optical clock recovery

    Get PDF
    ©1999 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from the IEEEMultiwavelength clock recovery is especially desirable in systems that use wavelength-division-multipleged technology. A multiwavelength clock-recovery device can greatly simplify costs by eliminating the need to have a separate regenerator for each wavelength. This letter discusses multiwavelength all-optical clock recovery using stimulated Brillouin scattering

    Beryllium abundances in metal-poor stars

    Full text link
    We have determined beryllium abundances for 25 metal-poor stars based on the high resolution and high signal-to-noise ratio spectra from the VLT/UVES database. Our results confirm that Be abundances increase with Fe, supporting the global enrichment of Be in the Galaxy. Oxygen abundances based on [O I] forbidden line implies a linear relation with a slope close to one for the Be vs. O trend, which indicates that Be is probably produced in a primary process. Some strong evidences are found for the intrinsic dispersion of Be abundances at a given metallicity. The deviation of HD132475 and HD126681 from the general Be vs. Fe and Be vs. O trend favours the predictions of the superbubble model, though the possibility that such dispersion originates from the inhomogeneous enrichment in Fe and O of the protogalactic gas cannot be excluded.Comment: 12 pages with 9 figures, to be published in MNRA

    NLTE analysis of Co I/Co II lines in spectra of cool stars with new laboratory hyperfine splitting constants

    Full text link
    We investigate the statistical equilibrium of Co in the atmospheres of cool stars, and the influence of NLTE and HFS (hyperfine splitting) on the formation of Co lines and abundances. Significant departures from LTE level populations are found for Co I, also number densities of excited states in Co II differ from LTE at low metallicity. The NLTE abundance of Co in solar photosphere is 4.95 +/- 0.04 dex, which is in agreement with that in C I meteorites within the combined uncertainties. The spectral lines of Co I were calculated using the results of recent measurements of hyperfine interaction constants by UV Fourier transform spectrometry. For Co II, the first laboratory measurements of hyperfine structure splitting A and B factors were performed. A differential abundance analysis of Co is carried out for 18 stars in the metallicity range -3.12 < [Fe/H] < 0. The abundances are derived by method of spectrum synthesis. At low [Fe/H], NLTE abundance corrections for Co I lines are as large as +0.6 >... +0.8 dex. Thus, LTE abundances of Co in metal-poor stars are severely underestimated. The stellar NLTE abundances determined from the single UV line of Co II are lower by ~0.5-0.6 dex. The discrepancy might be attributed to possible blends that have not been accounted for in the solar Co II line and its erroneous oscillator strength. The increasing [Co/Fe] trend in metal-poor stars, as calculated from the Co I lines under NLTE, can be explained if Co is overproduced relative to Fe in massive stars. The models of galactic chemical evolution are wholly inadequate to describe this trend suggesting that the problem is in SN yields.Comment: submitted to MNRAS, 15 page

    Manganese-oxidizing photosynthesis before the rise of cyanobacteria

    Get PDF
    The emergence of oxygen-producing (oxygenic) photosynthesis fundamentally transformed our planet; however, the processes that led to the evolution of biological water splitting have remained largely unknown. To illuminate this history, we examined the behavior of the ancient Mn cycle using newly obtained scientific drill cores through an early Paleoproterozoic succession (2.415 Ga) preserved in South Africa. These strata contain substantial Mn enrichments (up to ∼17 wt %) well before those associated with the rise of oxygen such as the ∼2.2 Ga Kalahari Mn deposit. Using microscale X-ray spectroscopic techniques coupled to optical and electron microscopy and carbon isotope ratios, we demonstrate that the Mn is hosted exclusively in carbonate mineral phases derived from reduction of Mn oxides during diagenesis of primary sediments. Additional observations of independent proxies for O_2—multiple S isotopes (measured by isotope-ratio mass spectrometry and secondary ion mass spectrometry) and redox-sensitive detrital grains—reveal that the original Mn-oxide phases were not produced by reactions with O_2, which points to a different high-potential oxidant. These results show that the oxidative branch of the Mn cycle predates the rise of oxygen, and provide strong support for the hypothesis that the water-oxidizing complex of photosystem II evolved from a former transitional photosystem capable of single-electron oxidation reactions of Mn
    corecore